skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sha, H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Interpretable models for criminal justice forecasting are desirable due to the high-stakes nature of the application. While interpretable models have been developed for individual level forecasts of recidivism, interpretable models are lacking for the application of space-time crime hotspot forecasting. Here we introduce an interpretable Hawkes process model of crime that allows forecasts to capture near-repeat effects and spatial heterogeneity while being consumable in the form of easy-to-read score cards. For this purpose we employ penalized likelihood estimation of the point process with a total-variation regularization that enforces the triggering kernel to be piece-wise constant. We derive an efficient expectation-maximization algorithm coupled with forward backward splitting for the TV constraint to estimate the model. We apply our methodology to synthetic data and space-time crime data from Indianapolis. The TV-Hawkes process achieves similar accuracy to standard Hawkes process models of crime while increasing interpretability and transparency. 
    more » « less